GLOBAL PROPERTIES OF LANGUAGE LEVELS
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This paper:is a continuation of investigations contained in Pogonowski
(1979a) and (1978b). It is devoted to a description of some algebraic and
topological structures on language levels. We will show that local properties
of analyzed texts can be used for introducing global structures on the whole
l&ngua.ge level. All terminology and notationsused here are defined and explain-
ed in Pogonowski (18790a, 1979b). . |

We recall that a relational structure is associated with every an&lyzed
text in our model of linguistic analysis. Consequently, a family of relational
structures (of the same type) i associated with each language level. All our
considerations are true for any arbitrary fixed language level. Let S, denote
a family of relational structures which corresponds to the i-th language level.
We will consider two types of structures on 8;: 4. algebraic, B. topological.
We assume that the reader is familiar with elementary notions from model
theory, universal algebra and general topology.

4. Algebraic structures on language levels

In Pogonowski (1979a) we considered a simple algebraic structure estab-
- lished on a particular language level. We recall it briefly here. Let our £2-ana-
lysis be i-}-1-linear. Assume that h is an equivalence relation on 8; defined
without the use of predicates from £2.,. Then there cxiste a mapping g from
the set 8ii1 in free semigroup Iy generated by the family of h-equivalence
classes 8;, . However, the algebraic structure of gy[Si4+;] induced from Fy is
rather simple. The inclusion gySi+1] & ¥n means that texts from the i+ 1-st
language level are linear combinations of texts from the i-th language level.
In this case we do not say anything about linguistic relations between texts.

We introduce & richer algebraic structure on 8y, using some notions defined
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in Pogonoweki ( 19‘791}} Recall the needed dﬁﬁmtmna

for WeS; define IP(U)={BeP (S;):B is isomorphic to some substructure of u}

~ for BeP(S;) define N (B)={W e 8,:B e IP(A)}.

Here P(8i)={J{P(A):A €8}, and P(A) denotes the family of all non-
-empty substructures of . The relation B & IP(A) induces a pair of functions
between 2 (8)) and 2 (P(8;)), (families of all subsets of 8; and P(S,), respect-
ively). Namely, we define:

for K8, K#= (YIP{A) (then K*cP(8;))
. AcEK g

for LeP(8;) L*=[\N(B) (then L*<8))
; el
“Theorem 1. - |
Let K8, LsP(Sy). The pair of funcblnns between sets #(S;) and #(P(S))

defined by
K—+K* I -L*

is a Galois connection.

For a proof of the ‘hhmrei:n one must check that the fullumng conditions are

true:

1. if Kl..c_K_, then XicK! (for K,, K,=8,)
2.if L,cL, then LicL?! (forL, L,cP(8))
3 KcK** (for KBy
4. LoL** : ~ (for L2P(8;))

We leave the proof, which is easy, to the reader. Here K** denotes (K*)*

-0f course, . :
Any Galois connection determines some closure operator. Namely, we
-define operator D: #(8) - #(§,) by D{K):tK** Then D has the fﬂllnwmg

prnper‘bles

Li#K,cK, then D(K,)SD(K,
2. KED(K) I
3. D(D{K))=D(K)

Hxample 1.

Let 8; correspond to the family of ell sentences of some fixed language.
Assume that syntactic categories (tense, voice, mood, etc.) are detormined by
the occurrence of a phrase with e strictly defined frame. Consider some set

-of sentences with only one common phrase (with respect to its structure) — say,
& phrase determining active voice. Let K be the family of relational structurea

from 8; which corresponds to this set. Then D(K) is the family of structures
which corresponds to the set of all active sentences. Similarly for the other
-categories mentioned above. It is interesting to determine when D is the
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algebraical closure operaior, i.e. whether the following condition holds:

* if We D(K), K<8; then there exists a finite set Ko<= K such that
AeD (Kn} .

The validity of (*) depends of course on the et S;. Let us consider the simplest
case, when 8 ie finite (only a finite number of texts is considered). Then D is
the algebraic closure operator, because in this case each subset of 8, is finite.
Before explaining this fact and its importance for linguistie analysls

~we mustrecall some notions from universal algebra.

1. Any closure operator D on the set A determines a system € of closed.
gsets in A, i.e. a family ¢ of subsets uf A which is closed with respect to set-
thaoretma.l intersection:

for any .ﬁf;@:("] A et

. The required family € is defined by:

- ¥={B<A:D(B)==B)

The family € is called an algebraic system of closed sets if the curreapnndmg
closure operator D is algebraic,

2. (Schmidt’s theorem). Assume that in the set A some a.lgabram gystem
€ of closed sets is determined. Then one can introduce the structure of algebra
into A. In addition, the family € is the family of all sub-algebras of this algebra.

We use the above facts to show when one can sssociate some interesting
algebraic structure' with the i-th language level. The following theorem is a
simple consequence of Schmidti’s theorem:

Theorem 2.
Assume that the set 8; is finite. Let:

- @={KESi:D(K)=K}'

where Disthe closure operator defined by the Galois connection from theorem 1
D{K)=K**, Then one can define operations oy, 04,..., 0s such that (S,
01, 0g,...,0n,» Will from an algebra. All sub-algebras of thls algebra are elements

of the fa,mlly ¥. The linguistic sense of this theorem. is illustrated by the
following example:

Ezample 2,

Let us make the same assumptions as in example 1. Denote by ¥ the system
of closed sets determined by the closure operator D from example 1. Then the
family ¢ will contain sets of structures which correspond to:

the family of al’ active sentences; and
the family of all passive sentences, among others.



146 1. POGOROWSKI

One can obtain, in an easy way, analogons of theorems I, 2 for 'the family
P(8). Tt would be interesting to construct the algebra ment.mned in theqm?:]
2 in the case of concrete, sufficiently rich, but not toe complicated 1-analysie.

B. Topological structures om language levels

Let M, denote the class of all relational structures of the type €. It 18
I

well known (see Bell and Slomson 1969, for example) that My, is a compact
topological space with a basis consisting of clnsed-npein sets. Bec;ause Si= My,
we can introduce in 8; a subspace topology. We are u_lterested in the:se tq?pr:p
logical properties of 8; from which follow corollaries important i:-::nr lingnistic
analysis. We start with a short presentation of some facts concerning su(;bspa;c?
. topology on 8; induced from My, . If ¢ is a sentence from L{€d) then‘ enote:

Mod{@)=={U My, 1 ¢ iﬁ_ valid in MW} ”
If & is a set of sentences from L(Qi) denote
. Mod (@)= [} Mod ().
. ; gl
The "family #; defined by .

-#1={K < 8, : there exists a sentence ¢ from L{Qi) such that for all A e K, ‘

@ is valid in 2} is & basis of subspace topology on 8;. Hence open sets in this
topelogy arc of the form
Kn':: UKn Whﬂrﬁ' KnE .@1

It is clear for any sentence ¢ from L)
8;— Mod (p)=8:n Mod (™ ¢) |
From this follows that closed sets in subspace topology are of the form:
Kn=(\Ea where Kac %

All elements of the family £, are simultaneously open. and closed.
Subspace topology on 8; is compact if and only if 8 is & closed éubset n:'_
My, . On the other hand, B; is closed (in My,) if and only if thm:e ex'mtls & set
& of sentences from L{€Qs) such that 8;—Mod (®). In terms of linguistic ana-
lysis, the existence of the set ® such that Sizﬂﬂd{d)) means. th&f: the 'l-'bl':'
language level can be described axiomatically. A necessary” and, sufficient

condition for the existence of a set ® with the above property is the following

equality:
. _ 8i=Mod (Th (81))
(here Th(Ss)= [} Th(A) and Th(A) is the set of all sentences from L),

valigiin 99 O™ , ; ic description
Hence, we see that the possibility of the existence of an axiomatic descrip
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in L(} of the i-th langnage level depends on our assumptions on the set Si.
For example, let the family 8, correspond to the level of all sentences of a
fixed language. Assume that we admit the possibility of forming arbitrarily
long (but still finite!) sentences. In this case the family S; will contain finite
structures of arbitrarily high cardinal. It is easy to show (using ultraproduct
congtruction) that in such a case there does nof exist a set @ of sentences from
L{€%) such that S;==Mod(®). In terms of lingunistic analysis: if we admit
arbitrarily long sentences, then: the property ‘“to be a sentence” cannot be
described axiomatically in the language of Inguistic analysis. _

- We will investigate some other topological structures on 8;. We will show
that the relation V, defined in Pogonowski (1979b) by A VB if and only if
IP(W)NIP(B)#0 determines some topologies on 8;. From the definition
of the relation it follows that these topologies are conmected with local
properties of texts. In Pogonowski {1979h) we proved that V is a’ tolerance
relation i.e. it satisfies the following eonditions: -

AV A (reflexivity)
AVB - BY U (symmetry)

Thus (8, V) is 2 tolerance gpace. Before investigating the topological structures
determined by V we recall some facts about tolerance spaces. Let (X, 1) be
any (fixed) tolerance space. We say that A = X isa preclass if forall x, y e A -
: xty. Maximal {with respect to inclusion) preclasses are called classes. Each
preclass is contained in some class. Denote by Hx the family of all clagses
in (X, 7). The family Hyx is a cover of X. For any X € X let Hx(x)=={A € Hx:
:x €A}, Define |
Xy = A (XT2 =y12).
zeX .

Then t+ is an equivalence relation on 8;. The set of all Tr-equivalence
clagses is denoted by X. Elements of the set X are called kernels. We denote

‘by J(x) the kernel which contains x. Thus X— {J(x): xe X}. A tolerance

space (X, 1) is called:

1. semple, if J(x)={x} for all xe X
2. regular, if A J(x)=) Hx(x) .

XEX

Afamily B < Hyx is called a basis of tolerance space (X, 1) if the following
conditions hold: - ,

1. if x1y then there exists. A ¢ B such that X,yeA
2. B 18 a minimal family satisfying 1 '

For every tolerance space there exists at least one bagis.
Now we come back to our model of linguistic analysis. First of all, we show
the interpretation of notions introduced above in the case of the considered
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tolerance space (8¢, V). Any preclass in (8, V) corresponds to the family of
texts which are all similar in the sense that any two texts from this family
have & common phrase with respect to structure. If A =8, is a class then the
corresponding-family of texts has the following property: there i1s no text
in §; — A similar (in the sense mentioned above) to all texts from A. Every

kernel J(H)e §; consists of texts which have exactly the same common .

(with respect to structure) phrases. It is interesting to find (and describe) a
basis B of (81, V) for a concrete fixed Q-annlysis. The golution of this problem
may be useful for language teaching: any basis B of (8:, V) is the most econo-
mical description of the structural degree of complexity of the i-th language
level and knowing & basis B we can reconstruct all structural similarities
between texts. We can obtain several topologies on 8; using the relation V:

1, For any o e§; denote V(¥)={B eSi: AV B}
Lot 3*=K < 8,: for every A K, V() = K}
Lemma 1.
3* is a topology on S |
Every open set K e 3% corresponds to the family of texts which, for every

element, contains all elements similar to this element. Topology J* has the
following properties: '

Theorem 3. (Hartnett)

1. Intersection of any family K ¢ 3* belongs to 3*

¢. There exist minimal open sets in J3*

8. Denote by Te(V) the transitive closure of V, i.e. the least trangitive relation
containing V. Then Tr(V) is of course an equivalence relation. The family

8t/zeey of all Tr(V)-equivalence classes is a basis for the topology J*.
For any other basis £ the following inclusion holds: -

Sty = &

However, the topology 3* seems to be a rather rough structure. We need
more subtle tools for description of the structural similarities (respectively
distinctions) between texts. '

2, For any WeS; and K,,..., Ko e Hg () define:
U(QI, K‘l! riuy Kn)= m K[
i

#B(W={K < 8;: there eoxists
UM, K, ..., Ky = K}
It is easy to prove the following lemma:

UM, K,, ..., Ko) such that only a finite number of texts)
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Temma 2,

a) for every U 8, #(A) £0
b) for all Ue&(A), AU

c) if U e U e R (B) then there exists Ve #(A) such that Vc U -
d). if ?1,1?25_.@(?1) then there exists V e #(¥) such that V < V.IV.»*

From lemma 2 it follows that for every A c8; the family #(%) is a

fund.&xr{ental system of neighbourhoods of . Hence the family {# (%) : % ¢ 8}
determines some topology 3 on 8;:

J={K = 5;: X is a sum of some subfamily of the family Uﬂ(ﬁl)}.
Properties of the space (8, J) are deseribed by the following i}he:i:m.
Theorem 4. (Shreider)
a) for any U, B 8;: Y VB if and only if there exi t

, y if there exists U(U, K

ey | ( ) such that

b} if {8,, V) is simple, then {8;, ) is T,-space
¢} (81, 3) is Hausdorff space if and only if (8, V) is simple and regular.
The topology 3 is richer than 3*, Indeed, the identity map id : (S, 3) — (81, 3%)

is continuous (but id is not a homeomorphism!). Any two elements % , Bel§

with the same kernel cannot be separated b .
' v an open set (we say that in thi
case W and B are arbitrarily near). - ( % i

3. Some quasi-topological structure is connected with every tolerance

~ 8pace. Namely, we define for every A < 8;

d(A)=1{B e 8,: there exists W e A such that A V B).

Of course d{A)= 'LEJA‘F (). The operator d : #(8) - £(S;) has the following
properties:

1. d(0¢)=0

2. d(Au B})=d{A)u d(B)
3. A = d(A)

4. d(A} = d(d{A}))

IJ? gen_era,}, melusion in 4) cannot be replaced by equality. For this reason
dis not a topological closure operator (in Kuratowski’s sense). The quasi-topo-
]ﬂgl{:‘.{il.-l gtructure introduced in 8; by d is vé;i'}r interesting. It is also useful in
applications, especially in the case when the set 8 is finite {t.e. if we consider

. If 8, ia finite, then every topology on S; which

* 4. Saloni pointed out that lemma ¢ (which is due to Sehreider) does not hold-

;Iowaver, theorem 4 holds, if we defineJ to be the topology determined by the sub-base
By

-—
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ig at least T,-topology iz automatically discrete and so useless for any ap-
plications. For this reason it seems to be better to investigate more general
(than classical) topological structures in finite sets. It iy reasonable to call
the structure determined by the operator d many-staged fopology (shortly:
me-topology). One can define analogons of some classical topological notions
for ms-topologies (closure, interior, boundary). ms-topology on (81, V) will
be investigated in more detail i one of our later articles,

Let us finish this paper with some general remarks, Topologies on 8,
show the geometrical structure of language. This structure can be further
investigated with the help of elementary homological algebra and algebraic
topology. One can obtain results similar to the above using the sets N(B),
(B e P(S))) and the relation A:UAB=N(U)n N(B)#£0. The linguistic
counterpart of this relation (and constructions connected with it) is
quite clear. Further, it is possible to show correspondence between the con-
sidered algebraic and topological structure on language levels (Galois con-
nection and tolerances V, A). Topological invariants obtained in this way
 can be used for developing a mathematical typology of languages. It is worth

pointing out that the global structures on language levels considered by us
here are determined by local properties of texts. It is of course possible to
investigate another (for example paradigmatic in the sense of Pogonowski
1979a) relation on 8; and obtain diffefent kinds of global strictures.
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